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This paper proposes a methodology to characterize uncertainty | ¢ Stochastic G a‘f‘ e. : .a gevin Dynamics (SGLD) I. Strategic Approach and its Integration into the Control Design
n automated vehicle (AV) dynamics in real fime via Bayesian To estimate the posterior distribution through the MAP, we develop an SGLD approach. The The main 1dea here 1s to add a real-time data driven uncertainty estimation layer into the CF
inference. Based on the estimated uncertainty, the method aims basic 1dea here is to iterate around the MAP solution, collect samples of the posterior controller. This can be adopted for whatever control structure the \}/]ehicle 1S usin ySu(:h approach
to continuously monitor the car-following performance ot the distribution and then empirical estimate this posterior. Specifically, for our real-time ' P . . & 15 USHIE. SUCH apb
AV  strafect r ) o desired ST . . o E0) . . allows us to gauge the performance of the controller 1n real-time and adjust 1ts behavior to recover
O Support Strategic actions 1o inaintain a desire estimation scheme at each iteration t, a mini-batch {D ' }i—l N of size Nz 1s used to desired performance
erformance. The sequential components 1n our methodolo . T '
1; o 1 P 24 update the SGLD parameters according to:
1.  Stochastic Gradient Langevin Dynamics (SGLD) for real n N- P | Upper-tevel controller
time estimation of vehicular dynamics uncertainty VK], T}) = E’ ViegP(K, Tf) + — ) VlogP(a;|a;, u;, K;,T7) | +& _eeulates CPbenavior ‘
11. Dynamic monitoring of car-following stability = ? * S *
1i1. itrategiic action for control adjustment 1f anomaly 1s g ~ A (0,n0) l R Adjust behavior for {“:j;z’;‘;;f;”g;zﬁiﬁg
ctecte | . . . .
Algorithm 1: SGLD Parameter Estimation 5 towerdevel contoler. z T
pA Background 1 Input: oY) — [KE,TE}] c R?, initial step size 17 > 0. % e Vem%“!ﬂgfynamics_ %
2 for k= 1,2,...,K do A A .
1 x - : Rand v le a subset of the intbatch .-'_]H"E] f s17ze No- 7 l i _______ Uncertainty estimation Prafi!ir}g uncertair}ty
I. Genel‘al LongltUdlnal VthCle Dynamlcs (GLVD) 3 andom }f hd]'ﬁp C d S5UDsCt O L ]'l'lll'lel d:’ { .I'-=l_...-.a"lrrk} OL 51Z2C Vg, Our real-time SGLD model hi{:;:;;:lggpzt?;zz?
Our estimation technique uses the GLVD general formulation below ! C”mp;t_l': the stochastic gradient V(K 77): ’ ot ’ ! : )
to capture two key uncertainty parameter relative to vehicle ) m{f; k ’[ 1) - cceleration, specd, Jerks
dynamics; T; which 1s the actuation lag and K; the ratio of the . 0" <« 0 V(KL T7): o -
demanded acceleration that can be realized. Accordingly, the method 7 end for
would use real time sensor data on jerk (a(t)), acceleration a(t), 8 for k> cdo .
and controller demanded acceleration u(t). o | Collect output 8% ~ P(K], T{ | D) II. Online Algorithm
1o end for We build an online algorithm that encompasses the envisioned strategic approach. In here we
a(t) = _l a(t) + ﬁ u(t) focus to three main intervening strategies depending on severity of the issue: (1) adjust the
) Iy, I11. Updating with New Data and Performance parameters 77, and K; inside the controller, (11) update control gains, (111) update time gap setting.
. . . . . L . Note that here we are showing a strategy for a typical linear controller, adjustments are needed for
Our approach 1s a dynamic and iterative one. Specifically, we are not just interested 1n different control structure
estimating the posterior distribution P(T},K} | D;) but to continuously update it on the fly e
3. Formulation when new data 1s available. The 1dea 1s simple, we use the current posterior as a prior but
with certain regularization. This regularization serves to penalize large deviations from the PP e y oy Temw—-—
: previous estimated posterior distribution. With the new prior we adjust our MAP SOTITAM = P NAC »iraiesy: TACUCo 2oce
I. The Bayesian Approach . . L L a1 (1) (1)
| . . | formulation to fit the new setting. 1 Input: Parameter estimates 0/ = |K; ', T;
Given a set of sensor data stream Dj;, the goal 1s to estimate the posterior o (i) .
distribution in real-time of parameters T; and K}, defined as P(T} K} | Dy). pl) {E’U_” (- 1}.] | 11 2 if 0% # K, 1 f?]_thE“ |
This 1s extremely challenging 1n real-time setting given the non-linearity, prior * L 7L * 3 f:h‘:‘ik stability (local and string)
unavailability of a closed formulation, and fast update frequency. Thus, | . 4 if Stable then -
typical probability sampling technique are ieffective. i (i [::i- .j-( KE} Tf”] ”2 ﬂ'_z | [EEJ ﬂ[ﬂ | ’EE_” T—L{;—Iq ' | _) 5 Update lower-level controller: Ky, T < [KEJ._TE”]
H._! _T" o d i ] l . 3 ] . .
We then resort to empirical methods for estimating P(T} K | D;). As such we o = : ° E:S i -
use the Maximum a Posterior (MAP) formulation for our setting to achieve a . . . . ! b Unsiable then
the below stochastic formulation: Thus, the output of our dynamic approach 1s an estimate of T; and K; along with 8 Update upper-level controller:
¢ . . . . . ' ; ; | )
uncertainty quantlﬁcatlon arognd ecach prediction. The model p.erfm.‘ms well for both . Update Control gains: " K| > [kl K> Ik IK] < | k“‘]  The ko kol
. parameters. Error increases with large values of T; and K; which 1s expected as the | ; |
~ iy Y o g controller is not performing well under there conditions. 2. Update time gap: 7° < 7" ¢ T
A?]]I"} (]ngP{HL._?L} | ZI{]gF(a,\a,,u,,KL._?L}) P g . end if
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Solving the above MAP provides a point estimate, yet what we require 1s 2t -
estimating the entire posterior distribution, which means collecting multiple 45 - -
samples and then estimating the distribution empirically. 0.4}
!
i Uncertainty Region
05| 02| —e—True K, | Acknowledgments
K ) . e This research was sponsored by the National Science Foundation through
1 2 3 4 5 o6 7 8 9 10 1 2 3 4 3 6 award CMMI 1536599

Experimental Run Experimental Run

TRB 2022 Presentation Number: 22-02030



	Slide Number 1

