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1. Research Objective

This paper proposes a methodology to characterize uncertainty
in automated vehicle (AV) dynamics in real time via Bayesian
inference. Based on the estimated uncertainty, the method aims
to continuously monitor the car-following performance of the
AV to support strategic actions to maintain a desired
performance. The sequential components in our methodology
are:
i. Stochastic Gradient Langevin Dynamics (SGLD) for real

time estimation of vehicular dynamics uncertainty
ii. Dynamic monitoring of car-following stability
iii. Strategic action for control adjustment if anomaly is

detected

2. Background

I. General Longitudinal Vehicle Dynamics (GLVD)
Our estimation technique uses the GLVD general formulation below
to capture two key uncertainty parameter relative to vehicle
dynamics; 𝑇𝑇𝐿𝐿 which is the actuation lag and 𝐾𝐾𝐿𝐿 the ratio of the
demanded acceleration that can be realized. Accordingly, the method
would use real time sensor data on jerk (𝑎̇𝑎(𝑡𝑡)), acceleration 𝑎𝑎 𝑡𝑡 ,
and controller demanded acceleration 𝑢𝑢(𝑡𝑡).

I. The Bayesian Approach
Given a set of sensor data stream 𝐷𝐷𝚤̃𝚤, the goal is to estimate the posterior
distribution in real-time of parameters 𝑇𝑇𝐿𝐿𝑡𝑡 and 𝐾𝐾𝐿𝐿𝑡𝑡, defined as 𝑃𝑃(𝑇𝑇𝐿𝐿𝑡𝑡,𝐾𝐾𝐿𝐿𝑡𝑡 | 𝐷𝐷𝚤̃𝚤).
This is extremely challenging in real-time setting given the non-linearity,
unavailability of a closed formulation, and fast update frequency. Thus,
typical probability sampling technique are ineffective.

We then resort to empirical methods for estimating 𝑃𝑃(𝑇𝑇𝐿𝐿𝑡𝑡,𝐾𝐾𝐿𝐿𝑡𝑡 | 𝐷𝐷𝚤̃𝚤). As such we
use the Maximum a Posterior (MAP) formulation for our setting to achieve a
the below stochastic formulation:

Solving the above MAP provides a point estimate, yet what we require is
estimating the entire posterior distribution, which means collecting multiple
samples and then estimating the distribution empirically.

II. The Stochastic Gradient Langevin Dynamics (SGLD)
To estimate the posterior distribution through the MAP, we develop an SGLD approach. The
basic idea here is to iterate around the MAP solution, collect samples of the posterior
distribution and then empirical estimate this posterior. Specifically, for our real-time
estimation scheme at each iteration 𝑡𝑡, a mini-batch 𝐷𝐷 𝑡̃𝑡,𝑖𝑖

𝑖𝑖=1,…,𝑁𝑁𝑖𝑖
of size 𝑁𝑁𝑡̃𝑡 is used to

update the SGLD parameters according to:

III. Updating with New Data and Performance
Our approach is a dynamic and iterative one. Specifically, we are not just interested in
estimating the posterior distribution 𝑃𝑃(𝑇𝑇𝐿𝐿𝑡𝑡,𝐾𝐾𝐿𝐿𝑡𝑡 | 𝐷𝐷𝚤̃𝚤) but to continuously update it on the fly
when new data is available. The idea is simple, we use the current posterior as a prior but
with certain regularization. This regularization serves to penalize large deviations from the
previous estimated posterior distribution. With the new prior we adjust our MAP
formulation to fit the new setting.

Thus, the output of our dynamic approach is an estimate of 𝑇𝑇𝐿𝐿 and 𝐾𝐾𝐿𝐿 along with
uncertainty quantification around each prediction. The model performs well for both
parameters. Error increases with large values of 𝑇𝑇𝐿𝐿 and 𝐾𝐾𝐿𝐿 which is expected as the
controller is not performing well under there conditions.

4. Strategic Approach

I. Strategic Approach and its Integration into the Control Design
The main idea here is to add a real-time data driven uncertainty estimation layer into the CF
controller. This can be adopted for whatever control structure the vehicle is using. Such approach
allows us to gauge the performance of the controller in real-time and adjust its behavior to recover
desired performance.

II. Online Algorithm
We build an online algorithm that encompasses the envisioned strategic approach. In here we
focus to three main intervening strategies depending on severity of the issue: (i) adjust the
parameters 𝑇𝑇𝐿𝐿 and 𝐾𝐾𝐿𝐿 inside the controller, (ii) update control gains, (iii) update time gap setting.
Note that here we are showing a strategy for a typical linear controller, adjustments are needed for
different control structure.
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3. Formulation
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